

isola

B-IS410/3

IS410

 ${\sf High-T}_{\sf g} \text{ and } {\sf high-}$ temperature-resistant base material

IS410

IS410 is based on a high- T_g epoxy system with a nominal glass transition temperature of 170 - 180 °C (DSC). This quality offers very high resistance to heat and chemical attack.

IS410 is particularly well-suited for leadfree soldering processes, which subject materials to increasingly greater thermal stresses.

Special Properties

- High T_g value (DSC) of 170 180 $^{\circ}\mathrm{C}$
- High temperature resistance; $T_{260} > 60 \text{ min}, T_{288} = 30 \text{ min}$ (time to delamination)
- High resistance to chemical attack
- CAF-resistant*
- Excellent resistance to heat shock (withstands six solder test repetitions 10 s at 288 °C)
- Completely cures without follow-up tempering
- * Conductive Anodic Filement Testing conditions: 1000 hours at 85 °C/85% r.h./100 V

Approval

Underwriters' Laboratories Inc. File-No. E41625

Typical Applications

Circuit boards subjected to high thermal stresses in the form of process, dissipation and ambient heat, as well as printed circuits requiring highly migration-resistant substrates.

Raw Materials

The same types of E-glass-fabric are used as for our standard-FR-4-quality DURAVER®-E-CU quality 104. Typical copper foil thicknesses (18, 35, 70 μ m) correspond to IPC-4562, grade 3 (HTE-quality). For laminates with a substrate \leq 0.1 mm VLP foils with HTE properties are used. Laminates are only available with double sided copper claddings.

Supply forms and storage

The laminates are produced in standard sheet size: 1225 x 1070 mm warp.

Prepregs are available with a standard width of approx. 1250 mm (location oriented). Other sheet sizes and roll widths available on request.

Dielectric constant depending on frequency and resin content

Recommended Pressing Parameters

Laminate and prepreg panels are cut to specification.

For pin-lam technology required holes are punched in the prepreg panels as specified.

A variety of punch tools is available for this purpose.

The prepregs can be stored for six months at < 5 °C or for three months at < 20 °C and relative humidity of < 50 %.

IS410 Standard prepregs

When removing chilled product from storage, take appropriate steps to prevent condensation.

Processing

IS410 should be pressed for two hours at 190 °C to ensure a complete curing of the resin matrix. Post-baking is not required. We recommend to use copperfoil type HTG for the production of multilayers.

As used for all high- T_g base materials, adapted drilling parameters are necessary.

Prepreg type	Nominal thickness		Resin content	Res. gel-time	Viscosity	Scaled flow	
	mm	inch	%	S	Pa·s	mil/Prepreg	mm/Prepreg
106 MD02	0.060	0.0024	73 ± 3	65 ± 15	28 ± 7	1.8 ± 0.25	0.046 ± 0.006
1080 MD01	0.075	0.0030	61 ± 3	65 ± 15	28 ± 7	2.3 ± 0.30	0.058 ± 0.007
2116 MD02	0.120	0.0047	50 ± 3	65 ± 15	28 ± 7	3.8 ± 0.30	0.097 ± 0.008
7628 MD01	0.200	0.0079	45 ± 3	65 ± 15	28 ± 7	6.6 ± 0.30	0.167 ± 0.008

IS410 Standard laminate constructions

Nominal thickness		Thickness	tolerance	Construction	Mean resin
		IPC-4101A cl. B	IPC-4101A cl. C		content
mm	inch	mm	mm		%
0.075	0.003	± 0.018	± 0.013	1 x 1080	61 ± 3
0.100	0.004	± 0.018	± 0.013	1 x 2116	42 ± 3
0.125	0.005	± 0.025	± 0.018	1 x 2165	45 ± 3
0.150	0.006	± 0.025	± 0.018	1 x 2157	44 ± 3
0.200	0.008	± 0.038	± 0.025	1 x 7628M	42 ± 3
0.250	0.010	± 0.038	± 0.025	2 x 2165	45 ± 3
0.300	0.012	± 0.050	± 0.038	2 x 2157	44 ± 3
0.360	0.014	± 0.050	± 0.038	2 x 7628	41 ± 3
0.410	0.016	± 0.050	± 0.038	2 x 7628M	43 ± 3
0.540	0.021	± 0.064	± 0.050	3 x 7628	41 ± 3
0.760	0.028	± 0.064	± 0.050	4 x 7628	41 ± 3
0.960	0.035	± 0.100	± 0.075	5 x 7628	41 ± 3

Other thicknesses on request.

The specific drilling parameters for this grade are available on our Homepage www.isola-group.com

Technical Values

Specification Sheet #:IPC-4101A/24Reinforcement:woven E-glassResin system:primary: epoxy • secondary: multifunctional epoxyFlame Retardant Mechanism:brominated epoxy resin • minimum UL requirement: V-1Fillers:noneID Reference:UL/ANSI: FR-4 • ANSI: FR-4/24Glass Transition (Tg):150 °C - 200 °C

Explanations:

C = preconditioning in humidity chamber E = preconditioning at temperature

The figures following the letter symbols indicate with the first digit the duration of the preconditioning in hours, with the second digit the preconditioning temperature in °C and with the third digit the relative humidity.

			Laminate thickness < 0.50 mm		l aminate thickness > 0 50 mm	
Pr	operties	Units	Specification		Specification	
1.	Peel Strength, minimum					
	A. Low profile copper foil and					
	profile copper foil – all copper					
	weights $> 17 \mu m$		0.70	n/a*	0.70	n/a*
	B. Standard profile copper foil (35 μm)					
	1. After thermal stress	N/mm	0.80	1.07	1.05	1.51
	2. At 125 °C	N/mm	0.70	0.87	0.70	1.36
	3. After process solutions	N/mm	0.55	1.10	0.80	1.68
	C. All other foil composite	N/mm	n/a*	n/a*	n/a*	n/a*
2.	Volume Resistivity, minimum					
	A. C-96/35/90	$M\Omega\cdot cm$	$1.0 \cdot 10^{6}$	6.0 · 10 ⁷	n/a*	n/a*
	B. After moisture resistance	$M\Omega\cdot cm$	n/a*	n/a*	1.0 · 104	3.4 · 10 ⁷
	C. At elevated temperature E-24/125	$M\Omega\cdotcm$	1.0 · 10 ³	4.0 · 10 ⁷	1.0 · 10 ³	3.8 · 10 ⁷
3.	Surface Resistivity, minimum					
	A. C-96/35/90	MΩ	1.0 · 10 ⁴	9.0 · 10 ⁷	n/a*	n/a*
	B. After moisture resistance	MΩ	n/a*	n/a*	1.0 · 10 ⁴	2.0 · 10 ⁷
	C. At elevated temperature E-24/125	MΩ	1.0 · 10 ³	6.0 · 10 ⁷	1.0 · 10 ³	3.8 · 10 ⁷
	Moisture Absorption, maximum	%	n/a*	n/a*	0.80	0.20**
	Dielectric Breakdown, minimum	kV	n/a*	n/a*	40	54
6.	Permittivity @ 1 MHz, maximum					
<u>.</u>	(Laminate or prepreg as laminated)		5.4	4.5 - 4.9	5.4	4.8
7.	Loss Tangent @ 1MHz, maximum		0.005	0.000	0.005	0.010
	(Laminate or prepreg as laminated)		0.035	0.020	0.035	0.018
8.	8. Flexural Strength, minimum		- / - ×		44 5	500
	A. Length direction B. Cross direction	N/mm ²	n/a*	n/a*	415	592
•	Flexural Strength @ Elevated Temperature,	N/mm ²	n/a*	n/a*	345	534
9.	length direction, minimum	N/mm²	n/a*	n/a*	n/a*	n/a*
10	Thermal Stress at 288 °C, minimum	N/IIIII	II/d	l I/d	TI/d	l I/d
10.	A. Unetched	S	≥ 10	≥ 10	≥ 10	≥ 10
	B. Etched	S	≥ 10 ≥ 10	≥ 10 ≥ 10	≥ 10 ≥ 10	≥ 10 ≥ 10
11	Electric Strength, minimum	5	210	210	210	210
• • •	(Laminate or prepreg as laminated)	kV/mm	30	36	n/a*	n/a*
12	Flammability	class	V-1	V-0	V-1	V-0
	Glass Transition Temperature (T _g) DSC	°C	150 - 200	170 - 180	150 - 200	170 - 180
	Coefficient of Thermal Expansion (CTE) TMA	Ŭ	100 200	170 100	100 200	170 100
	Fill direction (below T_{a} / above T_{a})	ppm/K	_	_	_	17/15
	Warp direction (below T_{g} / above T_{g})	ppm/K	_	_	_	13/6
	Vertical (below T_g / above T_g)	ppm/K	_	_	_	55/217
	(bolotting)	PPINK				00,217

Tests are carried out in accordance with IPC-650 test methods.

*not applicable **measured at 1.55 mm laminate

Our information and our eventual advice for the application of our products in any form (for instance oral, written or by tests) is given carefully and by the best of our knowledge but is not binding and is provided without making any representation or warranty, expressed or implied, and without any liability. The user is not released also in the case of our prior testing or if the use is based on our practical application advice from it's sole responsibility to use our product and to insure the correct application, the condition and fitness of our product for this application as well as the condition and fitness of the product itself.

USA

Isola USA Corp.

3100 W. Ray Road, Suite 301 Chandler, AZ 85226, USA Phone: +1/4 80 / 8 93 65 27 Fax: +1/4 80 / 9 17 51 92 E-mail: info@isola-usa.com

EUROPE

Isola GmbH Isolastr. 2 52353 Düren Germany Phone: +49 (0) 24 21/ 80 80 Fax: +49 (0) 24 21/ 80 81 64 E-mail: info-dur@isola-group.com

Isola Werke UK Ltd.

2, Wyndford Road Wardpark North Ind. Area GB-Cumbernauld G68 OBA Phone: +44 / 12 36 / 81 11 00 Fax: +44 / 12 36 / 81 11 01 E-mail: info-cum@isola-group.com

www.isola-group.com

MAS Italia s.r.l.

Via S. Sebastiano 21 I-51032 Bottegone (PT) Phone: +39 / 05 73 / 92 21 Fax: +39 / 05 73 / 92 22 65 E-mail: info-bot@isola-group.com

ASIA

Isola Asia Pacific (Taiwan) Inc. No. 915, Sec 2 Cheng Jung Road Kuang-Yin Industrial Zone (32821) Taoyuan Hsien · Taiwan, R.O.C. Phone: +8 86 / 34 83 - 70 00 Fax: +8 86 / 34 83 - 70 30 E-mail: asia@isola-group.com

10/05 · 09101053